首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8700篇
  免费   1886篇
  国内免费   1613篇
化学   10096篇
晶体学   202篇
力学   79篇
综合类   44篇
数学   105篇
物理学   1673篇
  2024年   26篇
  2023年   181篇
  2022年   466篇
  2021年   626篇
  2020年   1016篇
  2019年   695篇
  2018年   517篇
  2017年   465篇
  2016年   712篇
  2015年   674篇
  2014年   669篇
  2013年   837篇
  2012年   641篇
  2011年   580篇
  2010年   451篇
  2009年   427篇
  2008年   397篇
  2007年   391篇
  2006年   349篇
  2005年   291篇
  2004年   289篇
  2003年   261篇
  2002年   185篇
  2001年   126篇
  2000年   137篇
  1999年   88篇
  1998年   114篇
  1997年   80篇
  1996年   74篇
  1995年   65篇
  1994年   70篇
  1993年   34篇
  1992年   50篇
  1991年   35篇
  1990年   44篇
  1989年   29篇
  1988年   11篇
  1987年   10篇
  1986年   20篇
  1985年   13篇
  1984年   15篇
  1983年   7篇
  1982年   8篇
  1981年   10篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
A new germanosilicate zeolite named SCM-15 (Sinopec Composite Material No. 15), the first zeolite containing a 3-dimensional (3D) channel system with interconnected 12-, 12-, and 10-ring channels (pore sizes: 6.1×7.2, 6.1×7.4, and 5.2×5.9 Å), has been synthesized using neutral 4-pyrrolidinopyridine as organic structure-directing agents (OSDAs). Its structure has been determined by combining single-crystal electron diffraction (SCED) and synchrotron powder X-ray diffraction (SPXD) data. The unique open framework structure of SCM-15 is related to that of FOS-5 ( BEC ), ITQ-7 ( ISV ), PKU-16 ( POS ), ITQ-26 ( IWS ), ITQ-21, Beta polymorph B, and SU-78B, since all these framework structures can be constructed from similar chains which are connected through shared 4-ring or double 4-ring (d4r) units. Based on this relation, six topologically reasonable 3D large or extra-large pore hypothetical zeolites are predicted.  相似文献   
32.
Imide-functionalized π-conjugated polymer semiconductors have received a great deal of interest owing to their unique physicochemical properties and optoelectronic characteristics, including excellent solubility, highly planar backbones, widely tunable band gaps and energy levels of frontier molecular orbitals, and good film morphology. The organic electronics community has witnessed rapid expansion of the materials library and remarkable improvement in device performance recently. This review summarizes the development of imide-functionalized polymer semiconductors as well as their device performance in organic thin-film transistors and polymer solar cells, mainly achieved in the past three years. The materials mainly cover naphthalene diimide, perylene diimide, and bithiophene imide, and other imide-based polymer semiconductors are also discussed. The perspective offers our insights for developing new imide-functionalized building blocks and polymer semiconductors with optimized optoelectronic properties. We hope that this review will generate more research interest in the community to realize further improved device performance by developing new imide-functionalized polymer semiconductors.  相似文献   
33.
Highly position selective alkylations of N-alkylindoles at C7-positions have been enabled by cationic zirconium complexes. The strategy provides a straightforward access to install alkyl groups at C7-positions of indoles without a complex directing group. Mechanistic studies provided support for the importance of Brønsted acids in the catalytic manifold.  相似文献   
34.
1,3-Azaprotio transfer of propargylic α-ketocarboxylate oximes, a new type of alkynyl oximes featuring an ester tether, has been explored by taking advantage of gold catalysis. The incorporation of an oxygen atom to the chain of alkynyl oximes led to the formation of two different oxa-cyclic nitrones. It was found that internal alkynyl oximes with an E-configuration deliver five-membered nitrones, whereas terminal alkynyl oximes with an E-configuration afford six-membered nitrones. DFT calculations on four possible pathways supported a stepwise formation of C−N and C−H bonds, in which a 1,3-acyloxy-migration competes with the 1,3-azaprotio-transfer, especially in the case of internal alkynyl oximes. The relative nucleophilic properties of oxygen in the carbonyl group and the nitrogen in the oxime, the electronic effects of alkynes, and the influence of the ring system have been investigated computationally.  相似文献   
35.
Semiconductor metal oxides (SMO)-based gas-sensing materials suffer from insufficient detection of a specific target gas. Reliable selectivity, high sensitivity, and rapid response–recovery times under various working conditions are the main requirements for optimal gas sensors. Chemical warfare agents (CWA) such as sarin are fatal inhibitors of acetylcholinesterase in the nerve system. So, sensing materials with high sensitivity and selectivity toward CWA are urgently needed. Herein, micro-nano octahedral Co3O4 functionalized with hexafluoroisopropanol (HFIP) were deposited on a layer of reduced graphene oxide (rGO) as a double-layer sensing materials. The Co3O4 micro-nano octahedra were synthesized by direct growth from electrospun fiber templates calcined in ambient air. The double-layer rGO/Co3O4-HFIP sensing materials presented high selectivity toward DMMP (sarin agent simulant, dimethyl methyl phosphonate) versus rGO/Co3O4 and Co3O4 sensors after the exposure to various gases owing to hydrogen bonding between the DMMP molecules and Co3O4-HFIP. The rGO/Co3O4-HFIP sensors showed high stability with a response signal around 11.8 toward 0.5 ppm DMMP at 125 °C, and more than 75 % of the initial response was maintained under a saturated humid environment (85 % relative humidity). These results prove that these double-layer inorganic–organic composite sensing materials are excellent candidates to serve as optimal gas-sensing materials.  相似文献   
36.
Iridium complexes bearing chelating cyclometalates are popular choices as dopant emitters in the fabrication of organic light-emitting diodes (OLEDs). In this contribution, we report a series of blue-emitting, bis-tridentate IrIII complexes bearing chelates with two fused five-six-membered metallacycles, which are in sharp contrast to the traditional designs of tridentate chelates that form the alternative, fused five-five metallacycles. Five IrIII complexes, Px-21 – 23 , Cz-4 , and Cz-5 , have been synthesized that contain a coordinated dicarbene pincer chelate incorporating a methylene spacer and a dianionic chromophoric chelate possessing either a phenoxy or carbazolyl appendage to tune the coordination arrangement. All these tridentate chelates afford peripheral ligand–metal–ligand bite angles of 166–170°, which are larger than the typical bite angle of 153–155° observed for their five-five-coordinated tridentate counterparts, thereby leading to reduced geometrical distortion in the octahedral frameworks. Photophysical measurements and TD-DFT studies verified the inherent transition characteristics that give rise to high emission efficiency, and photodegradation experiments confirmed the improved stability in comparison with the benchmark fac-[Ir(ppy)3] in degassed toluene at room temperature. Phosphorescent OLED devices were also fabricated, among which the carbazolyl-functionalized emitter Cz-5 exhibited the best performance among all the studied bis-tridentate phosphors, showing a maximum external quantum efficiency (EQEmax) of 18.7 % and CIEx,y coordinates of (0.145, 0.218), with a slightly reduced EQE of 13.7 % at 100 cd m−2 due to efficiency roll-off.  相似文献   
37.
Two LnIII ions are sandwiched by dinuclear CoII building blocks derived from a tris‐triazamacrocyclic ligand bearing pendant carboxylic acid functionality, 1,3,5‐tris((4,7‐bis(2‐carboxyethyl)‐1,4,7‐triazacyclonon‐1‐yl)methyl)‐benzene (H6L), giving rising to two nanoscale heterometallic metal–organic cages formulated as [Co4Ln2(LH2.5)2(H2O)4]·(ClO4)6·NO3·nH2O [Ln = Dy, n = 12 ( 1 ); Ln = Yb, n = 9 ( 2 )], whose internal cavity accommodates a guest NO3? anion. Their hexanuclear cage‐like architectures are maintained both in solution and solid states as confirmed by mass spectrum as well as X‐ray diffraction experiments. These two cages display ligand‐based fluorescence emissions and therefore both were chosen to be operated as fluorescent chemosensors for the detection of nitroaromatic compounds. Attractively, these metal–organic cages allow highly selective and sensitive detection of picric acid (PA) over other nitroaromatics in solution and suspension, and the fluorescence resonance energy transfer (FRET) between the cage probes and PA is mainly responsible for the remarkable detection efficiency.  相似文献   
38.
Four simple methods are evaluated to determine their accuracies for establishing the interface location in secondary ion mass spectrometry intensity depth profiles of organic layers where matrix effects have not been measured. Accurate location requires the separate measurement of each ion's matrix factor. This is often not possible, and so estimates using matrix-less methods are required. Six pure organic material interfaces are measured using many secondary ions to compare their locations from the four methods with those from full evaluation with matrix terms. For different secondary ions, matrix effects cause the apparent interface positions to vary over 20 nm. The shifts in the intensity profiles on going from a layer of P into a layer of Q are in the opposite direction to that for going from Q into P, so doubling layer thickness errors. The four methods are as follows: M1, use of the median interface position in the intensity profiles for the five lightest ions for 15 ≤ m/z ≤ 150; M2, extrapolation of the position for each ion to m/z = 0 for ions with m/z ≤ 150; M3, as M2 but for m/z ≤ 300; and M4, the extreme positions for all m/z ≤ 100. Comparison with the location using matrix terms shows their ranking, from best to worst, to be M4, M3, M1, and M2 with average errors of 10%, 12%, 14%, and 17%, respectively, of the profile interface full widths at half maximum. Use of pseudo-molecular ions is very much poorer, exceeding 50%, and should be avoided.  相似文献   
39.
We put forth a dynamic computing framework for scale‐selective adaptation of weighted essential nonoscillatory (WENO) schemes for the simulation of hyperbolic conservation laws exhibiting strong discontinuities. A multilevel wavelet‐based multiresolution procedure, embedded in a conservative finite volume formulation, is used for a twofold purpose. (i) a dynamic grid adaptation of the solution field for redistributing grid points optimally (in some sense) according to the underlying flow structures, and (ii) a dynamic minimization of the in built artificial dissipation of WENO schemes. Taking advantage of the structure detection properties of this multiresolution algorithm, the nonlinear weights of the conventional WENO implementation are selectively modified to ensure lower dissipation in smoother areas. This modification is implemented through a linear transition from the fifth‐order upwind stencil at the coarsest regions of the adaptive grid to a fully nonlinear fifth‐order WENO scheme at areas of high irregularity. Therefore, our computing algorithm consists of a dynamic grid adaptation strategy, a scale‐selective state reconstruction, a conservative flux calculation, and a total variation diminishing Runge‐Kutta scheme for time advancement. Results are presented for canonical examples drawn from the inviscid Burgers, shallow water, Euler, and magnetohydrodynamic equations. Our findings represent a novel direction for providing a scale‐selective dissipation process without a compromise on shock capturing behavior for conservation laws, which would be a strong contender for dynamic implicit large eddy simulation approaches.  相似文献   
40.
Guided by the self-penetrating features can improve the stability of metal organic frameworks (MOFs), an unprecedented 3D self-penetrated framework, {[Zn (tptc)0.5(bimb)]·H2O}n ( NUC-6 , here NUC corresponding to North University of China), with 3D (4,4)-c {86} net, was designed. Benefit from the high chemical stability and excellent luminescent property, NUC-6 can be act as an efficient multi-response chemo-sensor in detecting dichloronitroaniline pesticide and nitrofuran antibiotics in water with the detection limits are 116 ppb for DCN pesticide, 16 ppb for NFT antibiotic, and 12 ppb for NTZ antibiotic. Besides, the mechanisms of luminescence quenching were revealed from the viewpoint of internal filter effect (IFE) and photo-induced electron transfer (PET), implied by the optical spectroscopy and quantum chemical calculation. This work provides a promising strategy to design stable MOFs by improving the self-penetrating features and to expand their practical applications in the detection of organic pollutants in aqueous medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号